Repository logo
 
Loading...
Thumbnail Image
Publication

New insights into the phytochemical profile and biological properties of Lycium intricatum Bois. (Solanaceae)

Use this identifier to reference this record.
Name:Description:Size:Format: 
plants-12-00996.pdf2.35 MBAdobe PDF Download

Advisor(s)

Abstract(s)

This work aimed to boost the valorisation of Lycium intricatum Boiss. L. as a source of high added value bioproducts. For that purpose, leaves and root ethanol extracts and fractions (chloroform, ethyl acetate, n-butanol, and water) were prepared and evaluated for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, ferric reducing antioxidant power (FRAP), and metal chelating potential against copper and iron ions. Extracts were also appraised for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), type-2 diabetes mellitus (T2DM, α-glucosidase), obesity/acne (lipase), and skin hyperpigmentation/food oxidation (tyrosinase). The total content of phenolics (TPC), flavonoids (TFC), and hydrolysable tannins (THTC) was evaluated by colorimetric methods, while the phenolic profile was determined by high-performance liquid chromatography, coupled to a diode-array ultraviolet detector (HPLCUV-DAD). Extracts had significant RSA and FRAP, and moderate copper chelation, but no iron chelating capacity. Samples had a higher activity towards α-glucosidase and tyrosinase, especially those from roots, a low capacity to inhibit AChE, and no activity towards BuChE and lipase. The ethyl acetate fraction of roots had the highest TPC and THTC, whereas the ethyl acetate fraction of leaves had the highest flavonoid levels. Gallic, gentisic, ferulic, and trans-cinnamic acids were identified in both organs. The results suggest that L. intricatum is a promising source of bioactive compounds with food, pharmaceutical, and biomedical applications.

Description

Keywords

Medicinal plants Phenolic compounds Oxidative stress Neuroprotection Diabetes Tyrosinase Goji

Citation

Plants 12 (5): 996 (2023)

Organizational Units

Journal Issue