Percorrer por autor "Rocha, P. R. F."
A mostrar 1 - 5 de 5
Resultados por página
Opções de ordenação
- Low frequency electric current noise in glioma cell populationsPublication . Rocha, P. R. F.; Schlett, P.; Schneider, L.; Dröge, M.; Mailänder, V.; Gomes, Henrique L.; Blom, P. W. M.; De Leeuw, Dago M.Measuring the electrical activity of large and defined populations of cells is currently a major technical challenge to electrophysiology, especially in the picoampere-range. For this purpose, we developed and applied a bidirectional transducer based on a chip with interdigitated gold electrodes to record the electrical response of cultured glioma cells. Recent research determined that also non-neural brain glia cells are electrically active and excitable. Their transformed counterparts, e.g. glioma cells, were suggested to partially retain these electric features. Such electrophysiological studies however are usually performed on individual cells and are limited in their predictive power for the overall electrical activity of the multicellular tumour bulk. Our extremely low-noise measuring system allowed us to detect not only prominent electrical bursts of neuronal cells but also minute, yet constantly occurring and functional, membrane capacitive current oscillations across large populations of C6 glioma cells, which we termed electric current noise. At the same time, tumour cells of non-brain origin (HeLa) proved to be electrically quiescent in comparison. Finally, we determined that the glioma cell activity is primarily caused by the opening of voltage-gated Na+ and K+ ion channels and can be efficiently abolished using specific pharmacological inhibitors. Thus, we offer here a unique approach for studying electrophysiological properties of large cancer cell populations as an in vitro reference for tumour bulks in vivo.
- Low-frequency diffusion noise in resistive-switching memories based on metal-oxide polymer structurePublication . Rocha, P. R. F.; Gomes, Henrique L.; Vandamme, L. K. J.; Chen, Q.; Kiazadeh, Asal; De Leeuw, Dago M.; Meskers, S. C. J.Low-frequency noise is studied in resistive-switching memories based on metal–oxide polymer diodes. The noise spectral power follows a 1/fγ behavior, with γ = 1 in the ohmic region and with γ = 3/2 at high bias beyond the ohmic region. The exponent γ = 3/2 is explained as noise caused by Brownian motion or diffusion of defects which induce fluctuations in diode current. The figure of merit to classify 1/f noise in thin films has an estimated value of 10−21 cm2/Ω, which is typical for metals or doped semiconductors. This value in combination with the low diode current indicates that the 1/f noise is generated in the narrow localized regions in the polymer between the contacts. The analysis unambiguously shows that the current in bistable nonvolatile memories is filamentary.
- New electronic memory device concepts based on metal oxide-polymer nanostructures planer diodesPublication . Kiazadeh, Asal; Rocha, P. R. F.; Chen, Q.; Gomes, Henrique L.Nanostructure silver oxide thin films diodes can exhibit resistive switching effects. After an electroforming process the device can be programmed between a low conductance (off-state) and high conductance (on- state) with a voltage pulse and they are already being considered for non-volatile memory applications. However, the origin of programmable resistivity changes in a network of nanostructure silver oxide embedded in polymer is still a matter of debate. This work provides some results on a planer diode which may help to elucidate resistive switching phenomena in nanostructure metal oxide diodes. The XRD pattern after switching appears with different crystalline planes, plus temperature dependent studies reveal that conduction of both on and off states is weak thermal activated. Intriguing the carrier transport is the same for both on and off-states. Difference between states comes from the dramatic changes in the carrier density. The main mechanism of charge transport for on-state is tunneling. The charge transport leads to SCLC in higher voltages pulse for the off state. The mechanism will be explained based on percolation concepts.
- Planar non-volatile memory based on metal nanoparticlesPublication . Kiazadeh, Asal; Gomes, Henrique L.; Costa, Ana M. Rosa da; Rocha, P. R. F.; Chen, Q.; Moreira, José; De Leeuw, Dago M.; Meskers, S. C. J.Resistive switching properties of silver nanoparticles hosted in an insulating polymer matrix (poly(N-vinyl-2-pyrrolidone) are reported. Planar devices structures using interdigitated gold electrodes were fabricated. These devices have on/off resistance ratio as high as 103 , retention times reaching to months and good endurance cycles. Temperature-dependent measurements show that the charge transport is weakly thermal activated (73 meV) for both states suggesting that nanoparticles will not aggregate into a metallic filament.
- Sudden death of organic light-emitting diodesPublication . Rocha, P. R. F.; Gomes, Henrique L.; Asadi, K.; Katsouras, I.; Bory, B.; Verbakel, F.; van de Weijer, P.; de Leeuw, D. M.; Meskers, S. C. J.The degradation in light output of an Organic Light Emitting Diode (OLED) has been studied extensively and has been explained by different mechanisms, such as formation of chemical defects or electrical traps and by thermally induced inter-diffusion of dopants. However, there is an overlooked type of degradation, where the light output decreases rapidly with time. This catastrophic failure can often be attributed to a hard electrical short due to local defects. Here, we show that this "sudden death" can also occur in the absence of a hard electrical short. We investigate this phenomenon by current-voltage characteristics and small-signal impedance measurements on typical OLEDs with a LiF cathode interlayer. We show that in a short period of time the built-in voltage of the diode vanishes; the J-V characteristics become symmetric. The origin is a dramatic increase in the work-function of the LiF interlayer. The interlayer changes from an electron-injecting contact to a quasi-Ohmic hole-injecting contact. The pristine bipolar diode does not become electrically shorted, but suddenly transforms into a unipolar hole-only diode. Upon applying a high voltage the original diode is restored, manifesting the dynamic switching of the LiF contact. (C) 2015 Elsevier B.V. All rights reserved.
