Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 12
  • Inactivation kinetics of peroxidase in zucchini (Cucurbita pepo L.) by heat and UV-C radiation
    Publication . Neves, Filipa I. G.; Vieira, M. M. C.; Silva, C. L. M.
    The effect of traditional thermal water blanching, or its combination with a UV-C radiation pre-treatment (11 J/m2), on the inactivation kinetics of peroxidase in zucchini (Cucurbita pepo L.) was carried out in the temperature range of 80 to 98 °C, and up to 3 min of processing time. Peroxidase inactivation started being noticed only at temperatures around 85 °C. For both treatments, the inactivation kinetics followed a first order reaction with the Arrhenius model describing the temperature dependence of the reaction rate. The obtained kinetic parameters (kHeat 89.6 °C = 7.37 × 10− 7 ± 3.47 × 10− 7 min− 1 and Ea Heat = 925 ± 69 kJ mol− 1; kHeat 89.6 °C + UV-C = 2.42 × 10− 5 ± 6.58 × 10− 6 min− 1 and Ea Heat + UV-C = 596 ± 48.8 kJ mol− 1) showed that UV-C radiation had a significant contribution to increase the peroxidase degradation rate. These results will help to design new pre-processing conditions for the production of frozen zucchini, using less severe thermal treatments and attempt to minimize quality losses.
  • Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices
    Publication . Rubilar, Javiera F.; Cruz, R. M. S.; Khmelinskii, Igor; Vieira, M. M. C.
    There is growing interest in the use of natural agents with antimicrobial (AM) and antioxidant (AOX) properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE) and chitosan, against gram-negative (Pseudomonas aeruginosa), gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis) and yeast (Saccharomyces cerevisiae) at 106 cfu mL−1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1)X, GSE (0-2000 ppm, X2) and chitosan (0-2% w/v, X3). Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1); 9.6 ppm-684 ppm-1.25% w/v (OAMC-2); 90 ppm-160 ppm-1.24% w/v (OAMC-3) were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA) of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT) at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations) by the 1,1-diphenyl-2- picrylhydrazyl (DPPH) method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3) was applied as a coating in two different food matrices (strawberries and salmon). For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.
  • Mathematical modeling of gallic acid release from chitosan films with grape seed extract and carvacrol
    Publication . Rubilar, Javiera F.; Cruz, Rui; Zuñiga, Rommy N.; Khmelinskii, Igor; Vieira, M. M. C.
    Controlled release of antimicrobial and antioxidant compounds from packaging films is of utmost importance for extending the shelf-life of perishable foods. This study focused on the mathematical modeling of gallic acid release into an aqueous medium from three chitosan films, formulated with grape seed extract (GSE) and carvacrol. We quantified the release by HPLC technique during 30days at three temperatures (5, 25 and 45°C). The diffusion coefficients, varying with temperature according to an Arrhenius-type relationship, and the respective activation energies for Film-1 and Film-2 were, respectively [Formula: see text] m2s-1 and [Formula: see text] m2s-1, Ea1=58kJmol-1 and Ea2=60kJmol-1 as obtained from the Fickian fit. The low concentrations of gallic acid released by Film-3 could not be detected by HPLC, therefore the respective diffusion coefficient was not estimated. This study will help with the development and optimization of active packaging (AP) films aiming at improved food preservation and shelf-life extension.
  • Stability of cupuaçu (Theobroma grandiflorum) nectar during storage
    Publication . Vieira, M. M. C.; Silva, Cristina L. M.
    A shelf-life study on cupua¸cu nectar (Theobroma grandiflorum) was carried out in two parts. Part I studied the microbial stability of the regular nectar (batch R) and the same nectar fortified with synthetic ascorbic acid (AA) (batch F), pasteurized at 90 ◦C for 3 min and hot filled in glass bottles. Total Plate Count (TPC), yeast and molds as well as pH, total soluble solids (TSS), titratable acidity and hidroxymethylfurfural (HMF) were followed along 43 storage days at 4, 25 and 35 ◦C. At the end of the storage period neither TPC nor molds or yeast had recovered the initial loads observed before pasteurization, for both R and F batches. Right after pasteurization, acidity increased slightly, pH decreased from 3.52 to 3.3, and TSS increased from 18.7 to 19.0 ◦Brix, with all stabilizing afterwards. Part II evaluated ascorbic (AA) and dehydroascorbic (DHAA) acids’ stabilization in the two batches, R and F, and dissolved oxygen (DO) was monitored. Both batches were stored at the same temperatures as in Part I for two months. For batch R, the AA degradation results followed a reversible first order reaction (EaAA(R) =-34±6 kJ/mol, k AA(R)25◦C =0.006±0.003 days−1 , C0AA(R)=0.92±0.01 and C ∞AA(R)= 0.43±0.19). For the (F) nectar, the experimental data fitted a first order model well (EaAA(F )=30±17 kJ/mol, k AA(F )25◦C =0.0016±0.0004 days−1 ). DO was modeled as a fractional conversion model (EaDO= 67±17 kJ/mol, kDO25◦C = 1.94±0.94 days−1 , C0DO=0.97±0.03 and C ∞DO= 0.55±0.01). For both nectars, storage at environmental temperatures was preferred (AA retention above 80%) to refrigeration, due to the slower rate of diffusion of DO at lower temperatures.
  • Combined pre-treatments effects on zucchini (Cucurbita pepo L.) squash microbial load reduction
    Publication . Neves, Filipa. I. G.; Silva, Cristina L. M.; Vieira, Margarida
    Freezing vegetables requires pre-treatments to reduce microbial load and destroy enzymes that impair the frozen product quality. So far blanching has been the most effective pre-treatment, preferred by the food industry, despite its severity: heating up to temperatures close to 100 °C for 1-3 min causes sensory and texture changes in most horticultural products. Alternative blanching treatments, using UV-C radiation combined with milder thermal treatments or with thermosonication, may improve the quality of the final frozen vegetables. Zucchini (Cucurbita pepo L.), the vegetable under study, has an availability in fresh restricted to a season, needing therefore to be often frozen to be used throughout the year. In this study, its surface was first inoculated with two vegetable contaminants, Enterococcus faecalis and Deinococcus radiodurans cells, which are resistant, respectively, to high temperatures and to radiation and then submitted to several blanching treatments, single or combined, and the effect on these microorganisms reduction was evaluated. As single treatments, water blanching (the control treatment, as it is the blanching treatment traditionally used) was applied up to 180 s at temperatures ranging from 65 to 90 °C, and UV-irradiation applied in continuous. As combined pre-treatments, water blanching combined with UV-C (continuous or in pulses), and thermosonication (20 kHz at 50% of power) combined with UV-C pulses were also studied. The continuous UV-C radiation incident irradiance was 11 W/m2 up to 180 s, and the pulses at incident radiance of 67 W/m2, lasting 3.5 s each (35 pulses). Mathematical modeling of bacterial reduction data was carried out using the Bigelow, the Weibull and Weibull modified models, and estimation of their respective kinetic parameters proved that the latter models presented a better fit below 75 °C. The best results proved to be the combination of water blanching at temperatures as low as 85 °C during <2 min with 25 pulses of UV-C (incident irradiance of 67 W/m2) or thermosonication at 90 °C also combined with UV-C pulses, both resulting in 3 log reductions of both microorganisms under study. These results proved to overcome what industry is requiring so far (a 2 log microbial reduction in 3 min), hence minimizing quality changes of frozen zucchini.
  • Modeling the kinetics of peroxidase inactivation, colour and texture changes of Portuguese cabbage (Brassica oleracea L. var. costata DC) during UV-C light and heat blanching
    Publication . Cruz, R. M. S.; Godinho, Ana; Aslan, Dilek; Koçab, Necip; Vieira, M. M. C.
    The e ects of heat blanching and UV-C light followed by heat on Portuguese cabbage peroxidase (POD), colour and texture were studied in the temperature range of 80-95 °C. POD inactivation, lightness (L) and yellowness (b) colour changes were described by a rst-order reaction model. The greenness (a) colour and texture ( rmness) changes followed a two fraction kinetic model behaviour. The temperature e ect was well described by the Arrhenius law. At lower temperatures the combined treatment showed higher POD inactivation. Colour and texture parameters did not show signi cant di erences between treatments. Long processing times turned the leaves slightly darker, decreased greenness, yellowness and rmness. Short processing times increased the rmness and greenness of the leaves. The treatment at 80 °C for 90 seconds reduced 90% of POD, retaining 98% of lightness and 92% of yellowness and improved the green colour (130%) and rmness (125%). At 80 °C the heat blanching required 7.4 min to inactivate 90% of the enzyme activity, reducing lightness, greenness, yellowness and rmness to 92%, 68%, 62% and 61%, respectively. The present ndings will help to optimize the Portuguese cabbage blanching conditions.
  • The response of watercress (Nasturtium officinale) to vacuum impregnation: Effect of an antifreeze protein type I
    Publication . Cruz, R. M. S.; Vieira, M. M. C.; Silva, C. L. M.
    The setting up of methodologies that reduce the size of ice crystals and reduce or inhibit the recrystalli- sation phenomena could have an extraordinary significance in the final quality of frozen products and consequently bring out new market opportunities. In this work, the effect of an antifreeze protein type I (AFP-I), by vacuum impregnation (VI), on frozen watercress was studied. The VI pressure, samples’ weight, Hunter Lab colour, scanning electron microscopy (SEM), and a wilting test were analysed in this work. The water intake of watercress samples augmented with vacuum pressure increase. The results also showed that, independently from the vacuum pressure used, the Lab colour parameters between raw and impregnated samples were maintained, showing no significant differences (P > 0.05). A VI of 58 kPa, during 5 min, allowed impregnating the AFP-I solution (0.01 mg ml-1) into the water- cress samples. The scanning electron microscopy (SEM) analysis showed the AFP-I impregnated frozen samples with better cell wall definition and rounded cell shape with smaller ice crystals compared with the control samples. The wilting test results corroborated that AFP-I is a valuable additive, since the leaves impregnated with AFP-I showed higher turgidity compared to the control samples. The present findings will help to better understand the effect of AFP-I, particularly, on frozen water- cress microstructure and its importance as valuable food additive in frozen foods and mainly in leafy vegetables.
  • Physico-mechanical properties of chitosan films with carvacrol and grape seed extract
    Publication . Rubilar, Javiera F.; Cruz, R. M. S.; Silva, Hélder D.; Vicente, António A.; Khmelinskii, Igor; Vieira, M. M. C.
    The physico-mechanical properties of 3 films composed by carvacrol, grape seed extract (GSE) and chitosan in different proportions were studied. The films, prepared by solvent casting technique with the following compositions of the casting solutions in carvacrol, GSE and chitosan: film-1: 9.6 ppm–684 ppm–1.25% w/v, film-2: 60 ppm–400 ppm–1.2% w/v and film-3: 90 ppm–160 ppm–1.24% w/v and were compared to a control (1.25% w/v chitosan) film. Mechanical, structural, barrier and colour properties of the films were evaluated. Film-3 presented the lowest water vapour and carbon dioxide permeabilities (WVP and CO2P) and tensile strength (TS) values and the highest oxygen permeability (O2P), whereas film-1 presented the highest water content and the lowest crystallinity, CO2P, TS and luminosity. These results suggest that in the range studied, carvacrol and GSE affect the film structure and its mechanical properties due to hydrophilic (GSE) and hydrophobic (carvacrol) compounds. This work will help the development of edible films, based on physico-mechanical properties, contributing to food preservation and shelf-life extension.
  • Food science and technology students self-evaluate soft and technical skills
    Publication . Flynn, Katherine M.; Ho, Peter; Vieira, M. M. C.; Rosa, Marco Dalla
    Food Scientists and Technologists (FS&T) need diverse skills in the globalized food and drink sector: Food-specific or scientific / technical skills and generic or intuitive soft skills. This study determined how satisfied FS&T students were with overall improvement, and in key technical and soft skills, based on their university work; and if satisfaction was linked to geography, degree in progress, anticipated degree, anticipated work place or anticipated job responsibility. An on-line survey was completed by 267 students in over 20 countries using a 5-point Likert scale to evaluate satisfaction. Responses were analyzed by the Friedman or Kruskal Wallis tests for more than two groups, otherwise by the Wilcoxon Signed Rank or Mann-Whitney tests. There were no differences in Overall Satisfaction with technical and soft skills training. Among soft skills, training in Working with Others and Being Responsible were more often rated “Excellent” and students were more satisfied with their training than with Solving Problems, Communication and Positive Attitude. Students anticipating a job with high responsibility were more satisfied with overall soft skill training and with 3 of the 5 specific soft skills. Among technical skills, students were more satisfied with improvement in basic sciences (Microbiology, Chemistry, Processing, Safety), and those in Northern Europe were more satisfied with overall technical training. These data show variations in perception and/or efficacy of technical and soft skill training in Food Science programmes and underline the need for separate attention to the incorporation of soft skill training into the design of FS&T courses
  • Optimization conditions of UV-C radiation combined with ultrasound-assisted extraction of cherry tomato (Lycopersicon esculentum) lycopene extract
    Publication . Lima, A. R.; Cristofoli, N. L.; Venerala, J. G.; Fritz, A. R. M.; Vieira, M.M.C.
    The aim of this work was to study the effect of UV-C radiation on ultrasound assisted extraction (UAE) of cherry tomato bioactive compounds. Cherry tomatoes were exposed to two UV-C radiation doses (0.5 and 1.0 J cm−2 ) and stored at 20 ± 0.5 oC for 7 days. Next, they were lyophilized, and the bioactive compounds were extracted by UAE at 20 KHz. To evaluate the effectiveness of the extraction process of the bioactive compounds, a CCRD (central composite rotational design) was used together with RSM (response surface methodology), for extraction times from 4 to 12 minutes and concentrations (g of lyophilized product / L of ethanol) of 1:10, 1:20 and 1:30. The extracts obtained from the irradiated tomatoes presented 5.8 times more lycopene content than the controls and higher antioxidant activity was obtained for 4 and 8 min, in the concentrations 1:10 and 1:20 (m v−1). Through numerical model optimization, optimal extraction conditions were obtained. The results demonstrated that by previously irradiating tomatoes with UV-C light, the UAE yielded considerably higher amounts of lycopene and other bioactives.