Loading...
54 results
Search Results
Now showing 1 - 10 of 54
- Oceanographic conditions limit the spread of a marine invader along Southern African shoresPublication . Assis, J.; Zupan, Mirta; Nicastro, Katy; Zardi, Gerardo I.; McQuaid, Christopher D.; Serrao, Ester A.Invasive species can affect the function and structure of natural ecological communities, hence understanding and predicting their potential for spreading is a major ecological challenge. Once established in a new region, the spread of invasive species is largely controlled by their dispersal capacity, local environmental conditions and species interactions. The mussel Mytilus galloprovincialis is native to the Mediterranean and is the most successful marine invader in southern Africa. Its distribution there has expanded rapidly and extensively since the 1970s, however, over the last decade its spread has ceased. In this study, we coupled broad scale field surveys, Ecological Niche Modelling (ENM) and Lagrangian Particle Simulations (LPS) to assess the current invaded distribution of M. galloprovincialis in southern Africa and to evaluate what prevents further spread of this species. Results showed that all environmentally suitable habitats in southern Africa have been occupied by the species. This includes rocky shores between Rocky Point in Namibia and East London in South Africa (approx. 2800 km) and these limits coincide with the steep transitions between cool-temperate and subtropical-warmer climates, on both west and southeast African coasts. On the west coast, simulations of drifting larvae almost entirely followed the northward and offshore direction of the Benguela current, creating a clear dispersal barrier by advecting larvae away from the coast. On the southeast coast, nearshore currents give larvae the potential to move eastwards, against the prevalent Agulhas current and beyond the present distributional limit, however environmental conditions prevent the establishment of the species. The transition between the cooler and warmer water regimes is therefore the main factor limiting the northern spread on the southeast coast; however, biotic interactions with native fauna may also play an important role.
- Biogeographical patterns of endolithic infestation in an invasive and an indigenous intertidal marine ecosystem engineerPublication . Ndhlovu, Aldwin; McQuaid, Christopher D.; Nicastro, Katy; Marquet, Nathalie; Gektidis, Marcos; Monaco, Cristián J.; Zardi, GerardoBy altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M. galloprovincialis we found a significantly higher infestation in the cool temperate bioregion than the warm temperate region. For P. perna, the prevalence of infestation was higher on the warm temperate than the subtropical region, though the difference was marginally non-significant. On the south coast, there was no significant difference in infestation prevalence between species. Endolith-induced mortality rates through shell collapse mirrored the patterns for prevalence. For P. perna, endolith species assemblages revealed clear grouping by bioregions. Our findings indicate that biogeography affects cyanobacteria species composition, but differences between biogeographic regions in their effects are driven by environmental conditions.
- Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitatsPublication . R Nicastro, Katy; Zardi, Gerardo I.; de los Santos, Carmen B.Plastic waste has become ubiquitous in ecosystems worldwide. Few, recent studies report evidence of coastal vegetated habitats acting as sink for plastics, yet assessments have been completed either for macro or microplastics and focussing on just one type of vegetated habitat. Here, we investigated the role of marine coastal vegetated habitats as sinks for macro (≥5 mm) and microplastics (<5 mm) through a comprehensive, multi-habitat approach. We assessed the occurrence, abundance and physical properties of macro and microplastics in the canopy and superficial sediment of two intertidal (seagrass Zostera noltei, saltmarsh Sporobolus maritimus) and two subtidal (mixed seagrass meadows of Cymodocea nodosa and Zostera marina, rhizophytic macroalga Caulerpa prolifera) habitats in the Ria Formosa lagoon (Portugal). Our results showed that coastal vegetated habitats trapped macro and microplastics in the sediment at variable degrees (1.3-17.3 macroplastics 100 m-2, and 18.2-35.2 microplastics kg-1). Macroplastics accumulated in all vegetated habitat but not in nearby unvegetated areas, yet only S. maritimus habitat presented a significant trapping effect. Microplastics occurred in the sediment of all vegetated and unvegetated areas with similar abundances and high variability. Microplastics, all of type fibre, were recorded on all canopies except for S. maritimus. Overall, the trapping capacity of microplastics in the sediment and on the canopy was higher for subtidal than for intertidal vegetated habitats. We conclude that generalizations in the trapping effect of coastal vegetated areas should be done with caution, since it may be highly variable and may depend on the plastic size, habitat and tidal position. Since these habitats support a high biodiversity, they should be included in assessments of plastic debris accumulation and impacts in coastal areas. Further research, including experimental studies, is needed to shed more light on the role of coastal vegetated habitats as plastic sinks.
- Photoautotrophic Euendoliths and their complex ecological effects in marine bioengineered ecosystemsPublication . Dievart, Alexia M.; McQuaid, Christopher D.; Zardi, Gerardo I.; Nicastro, Katy; Froneman, Pierre W.Photoautotrophic euendolithic microorganisms are ubiquitous where there are calcium carbonate substrates to bore into and sufficient light to sustain photosynthesis. The most diverse and abundant modern euendolithic communities can be found in the marine environment. Euendoliths, as microorganisms infesting inanimate substrates, were first thought to be ecologically irrelevant. Over the past three decades, numerous studies have subsequently shown that euendoliths can colonize living marine calcifying organisms, such as coral skeletons and bivalve shells, causing both sub-lethal and lethal damage. Moreover, under suitable environmental conditions, their presence can have surprising benefits for the host. Thus, infestation by photoautotrophic euendoliths has significant consequences for calcifying organisms that are of particular importance in the case of ecosystems underpinned by calcifying ecosystem engineers. In this review, we address the nature and diversity of marine euendoliths, as revealed recently through genetic techniques, their bioerosive mechanisms, how environmental conditions influence their incidence in marine ecosystems and their potential as bioindicators, how they affect live calcifiers, and the potential future of euendolithic infestation in the context of global climate change and ocean acidification
- Canopy microclimate modification in central and marginal populations of a marine macroalgaPublication . Monteiro, Cátia; Zardi, Gerardo I.; McQuaid, Christopher D.; Serrao, Ester; Pearson, Gareth; Nicastro, KatyThe effects of environmental changes on species distribution are generally studied at large geographical scales. However, aggregations of individuals can significantly moderate the impact of the environment at smaller, organismal scales. We focused on the intertidal macroalga Fucus guiryi and carried out field and laboratory common garden experiments to evaluate how the different individual morphologies and canopy densities typical of central and peripheral populations modify microhabitat conditions and associated levels of stress. We show that F. guiryi canopies significantly alter environmental conditions (i.e., temperature, humidity and light regimes) and mitigate the levels of stress experienced by individuals within the group. Southern algae are more branched and form denser canopies but, unexpectedly, despite these considerable differences, the mitigating effects of northern and southern canopies did not differ significantly. Microhabitat conditions beneath canopies were more stressful at marginal locations, indicating that southern populations are not more effective than northern algae at mitigating the harsher climate at the edge of the species distribution. Our findings highlight the importance of assessing structural changes in aggregating species across their distribution and relating these to local climates to understand the impact of environmental changes at scales relevant to individual organisms.
- Broad scale agreement between intertidal habitats and adaptive traits on a basis of contrasting population genetic structurePublication . I Zardi, Gerardo; Nicastro, Katy R; Ferreira Costa, J.; Serrão, Ester; Pearson, G. A.Understanding the extent to which neutral processes and adaptive divergence shape the spatial structure of natural populations is a major goal in evolutionary biology and is especially important for the identification of significant levels of biodiversity. Our results identified replicated habitat-specific (adaptive) phenotypic divergence in the brown macroalga Fucus vesiculosus that is independent of population (neutral) genetic structure. F. vesiculosus inhabits contiguous and contrasting marine to estuarine intertidal habitats. Combining analyses of genetic and phenotypic traits of populations living under differential selective regimes (estuaries and open coast), we investigated levels of neutral genetic differentiation and adaptive physiological responses to emersion stress. In southwest England (SW UK) and northern Iberia (N. Iberia), populations living in estuaries and marine coastal habitats were genetically characterized at six microsatellite loci. In N. Iberia, two clades with limited admixture were recovered, each including one open coast site and the adjacent estuarine location. In contrast, SW UK samples clustered according to habitat and formed three distinct groups of genotypes; one including the two open coast locations and the other two representing each of the estuarine sites. Temperature loggers revealed distinct emersion regimes that characterized each habitat type independently of the region, while water and air temperature profiles showed site-specific trends. Despite acclimation under usual conditions, trait means of emersion stress resilience showed a strong phenotypic divergence between habitats, consistent with environmental clines in exposure time observed in the different habitats. We demonstrate that neutral genetic clusters do not reflect locally adapted population units. Our results identified replicated habitat-specific (adaptive) phenotypic divergence that is independent of population (neutral) genetic structure in F. vesiculosus. The significance of such findings extends beyond the theoretical evolutionary and ecological interest of discovering parallel adaptive responses to the broader implications for conservation of intraspecific biodiversity.
- Coastal topography drives genetic structure in marine musselsPublication . Nicastro, Katy; Zardi, Gerardo; McQuaid, C. D.; Teske, P. R.; Barker, N. P.Understanding population connectivity is fundamental] to ecology, and, for sedentary organisms, connectivity is achieved through larval dispersal. We tested whether coastal topography influences genetic structure in Perna Perna mussels by comparing populations inside bays and on the open coast. Higher hydrodynamic stress on the open coast produces higher mortality and thus genetic turnover. Populations on the open coast had fewer private haplotypes and less genetic endemism than those inside bays. Gene flow analysis showed that bays act as Source populations, with greater migration rates Out. of bays than into them. Differences in genetic structure on scales of 10s of kilometres show that coastal configuration strongly affects selection, larval dispersal and haplotype diversity,
- Love thy neighbour: group properties of gaping behaviour in mussel aggregationsPublication . Nicastro, Katy R; I Zardi, Gerardo; McQuaid, C. D.; Pearson, G. A.; Serrão, EsterBy associating closely with others to form a group, an animal can benefit from a number of advantages including reduced risk of predation, amelioration of environmental conditions, and increased reproductive success, but at the price of reduced resources. Although made up of individual members, an aggregation often displays novel effects that do not manifest at the level of the individual organism. Here we show that very simple behaviour in intertidal mussels shows new effects in dense aggregations but not in isolated individuals. Perna perna and Mytilus galloprovincialis are gaping (periodic valve movement during emersion) and non-gaping mussels respectively. P. perna gaping behaviour had no effect on body temperatures of isolated individuals, while it led to increased humidity and decreased temperatures in dense groups (beds). Gaping resulted in cooler body temperatures for P. perna than M. galloprovincialis when in aggregations, while solitary individuals exhibited the highest temperatures. Gradients of increasing body temperature were detected from the center to edges of beds, but M. galloprovincialis at the edge had the same temperature as isolated individuals. Furthermore, a field study showed that during periods of severe heat stress, mortality rates of mussels within beds of the gaping P. perna were lower than those of isolated individuals or within beds of M. galloprovincialis, highlighting the determinant role of gaping on fitness and group functioning. We demonstrate that new effects of very simple individual behaviour lead to amelioration of abiotic conditions at the aggregation level and that these effects increase mussel resistance to thermal stress.
- Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosusPublication . Nicastro, Katy R; I Zardi, Gerardo; Teixeira, Sara; Neiva, J.; Serrão, Ester; Pearson, G. A.Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species. We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Results Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. Conclusions We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).
- Intraspecific genetic lineages of a marine mussel show behavioural divergence when exposed to microplastic leachatesPublication . Cozzolino, Lorenzo; Nicastro, Katy R; Hubbard, Peter; Seuront, Laurent; McQuaid, Christopher D.; Zardi, Gerardo IWorldwide, microplastic pollution has numerous negative implications for marine biota, exacerbating the effects of other forms of global anthropogenic disturbance. Mounting evidence shows that microplastics (MPs) not only cause physical damage through their ingestion, but also act as vectors for hazardous compounds by leaching absorbed and adsorbed chemicals. Research on the effects of plastic pollution has, however, largely assumed that species respond uniformly, while ignoring intraspecific diversity (i.e., variation within a single species). We investigated the effects of plastic leachates derived from factory-fresh (virgin) and beached microplastics on the behavioural responses of two genetic lineages of the Mediterranean mussel Mytilus galloprovincialis. Through laboratory behavioural experiments, we found that during exposure to leachates from beached microplastics (beached MPLs), Atlantic specimens moved significantly less than Mediterranean individuals in terms of both (i) proportion of individuals responding through movement and (ii) net and gross distances crawled. In contrast, no significant intraspecific differences were observed in the behaviour of either adults or recruits when exposed to MPLs from virgin microplastics (virgin MPLs). Additionally, the reception of cues from three amino acids (Lcysteine, proline and L-leucine) at increasing concentrations (10-5 M to 10-3 M in charcoal-filtered seawater) was tested by electrophysiological analysis using mussels exposed to beached MPLs or control seawater. We found significant intraspecific differences in response to 10-3 M L-cysteine (regardless of treatment) and 10-4 M L-cysteine (in mussels exposed to beached MPLs) and to 10-3 M proline (in mussels exposed to beached MPLs) and 10-5 M L-leucine. Our study suggests that intraspecific variation in a marine mussel may prompt different responses to plastic pollution, potentially triggered by local adaptation and physiological variability between lineages. Our work highlights the importance of assessing the effects of intraspecific variation, especially in environmental sentinel species as this level of diversity could modulate responses to plastic pollution.