Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 43
  • Monitoring bubble production in a seagrass meadow using a source of opportunity
    Publication . Felisberto, Paulo; Rodríguez, Orlando; Silva, João P.; Jesus, Sergio; Ferreira, Hugo Q.; Ferreira, Pedro P.; Cunha, Maria E.; de los Santos, Carmen B.; Olivé, Irene; Santos, Rui
    Under high irradiance, the photosynthetic activity of dense seagrass meadows saturates the water forming oxygen bubbles. The diel cycle of bubble production peaks at mid-day, following light intensity pattern. It is well known that bubbles strongly affect the acoustic propagation, increasing signal attenuation and decreasing the effective water sound speed, noticeable at low frequencies. Thus, the diurnal variability of bubbles may show an interference pattern in the spectrograms of low frequency acoustic signals. In an experiment conducted in July 2016 at the Aquaculture Research Station of the Portuguese Institute for the Sea and Atmosphere in Olhão, Portugal, the spectrograms of low frequency (<20kHz) broadband noise produced by water pumps in a pond of 0.48ha covered by the seagrass Cymodocea nodosa showed interference patterns that can be ascribed to the variability of the sound speed in the water. Preliminary analysis suggests that the daily cycle of bubble concentration can be inferred from these interference patterns.
  • Dynamics of acoustic propagation through a soliton wave packet: Observations from the INTIMATE'96 experiment
    Publication . Rodríguez, O. C.; Jesus, S. M.; Stephan, Y.; Demoulin, X.; Porter, M. B.; Coelho, E.; Springer
    Experimental observations of acoustic propagation through a Soliton Wave Packet (SWP) show an abnormally large attenuation over some frequencies, that was found to be significantly time dependent and anisotropic. Nevertheless, by considering the problem of signal attenuation, the approach used in most of the studies can be considered as "static" since no additional effects were taken into account as a SWP evolves in range and time. Hydrographic and acoustic data from the INTIMATE'96 experiment clearly exhibit traces of the presence of soliton packets, but in contrast with known observations of attenuation, its frequency response also reveals a sudden increase of signal amplitude, which may be due to a focusing effect. This signal increase coincides with a significant peak found in current and temperature records. However, the correlation of both acoustic and hydrographic features is difficult to support due to the different time scales between the rate of hydrographic data sampling and the rate of signal transmissions. To study the possibility that a SWP could be responsible for the observed signal increase, the INTIMATE'96 hydrographic data was used to generate physically consistent distributions of "soliton-like" fields of temperature and sound velocity, which were used as input for a range-dependent normal-mode model it was found that for a particular soliton field, the set of "dynamic" (i.e., range-dependent and time-dependent) acoustic simulations reveals an acoustic signature similar to that observed in the data. These results contribute to a better understanding of underwater propagation in shallow-water coastal environments and therefore provide a potential basis for range-dependent temperature and sound-speed inversions.
  • The TV-APM interface: a web service for collaborative modeling
    Publication . Rodríguez, O. C.; Silva, A.; Zabel, F.; Jesus, S. M.
    Current development of Internet access, together with available zero-cost Open Source applications (like, for instance, PHP, Python, etc.) can be integrated in order to minimize the constrains induced by the geographical separation of international centers, which collaborate in a given project. The advantage of such approach lies in the sharing of common analysis methods, without particular constrains to specific directions of analysis. The discussion presented in this paper describes the Time Variable Acoustic Propagation Model (TV-APM) web interface, which was created as a collaborative service of acoustic modeling for the participants of the PHITOM and UAN projects. This paper describes the general architecture of the interface, its current shortcomings and advantages, and presents a set of modeling results for short range acoustic propagation, which accounts for source–array and sea surface motion.
  • Using active and passive acoustics to assess O2 production of a Posidonia oceanica meadow
    Publication . Felisberto, P.; Zabel, F.; Rodríguez, O. C.; Santos, P.; Jesus, S. M.; Champenois, W.; Borges, A. V.; Santos, Rui
    This work discusses the data acquired during two experiments conducted in October 2011 and May 2013 in the Bay of la Revellata, Calvi, Corsica for the purpose of developing an acoustic system for monitoring the oxygen production of a seagrass meadow.
  • The TV-APM interface: a web service for collaborative modelling
    Publication . Rodríguez, Orlando; Silva, António J.; Zabel, Friedrich; Jesus, S. M.
    Current development of Internet access, together with available zero-cost Open Source applications (like, for instance, PHP, Python, etc.) can be integrated in order to minimize the constrains induced by the geographical separation of international centers, which collaborate in a given project. The advantage of such approach lies in the sharing of common analysis methods, without particular constrains to specific directions of analysis. The discussion presented in this paper describes the Time Variable Acoustic Propagation Model (TV-APM) web interface, which was created as a collaborative service of acoustic modeling for the participants of the PHITOM and UAN projects. This paper describes the general architecture of the interface, its current shortcomings and advantages, and presents a set of modeling results for short range acoustic propagation, which accounts for source–array and sea surface motion.
  • Correlation between the acoustic noise field measured in a Posidonia oceanica bed and the photosynthetic activity
    Publication . Felisberto, P.; Zabel, F.; Rodríguez, O. C.; Santos, P.; Jesus, S. M.; Champenois, W.; Borges, A. V.; Santos, Rui
    During the period of one week, from May 8 to 15, 2013, acoustic data was gathered at three locations over a Posidonia oceanica bed in the Bay of Revellata, Corsica. Preliminary analysis of the acoustic data shows that the environmental noise field in the band 2-7kHz was dominant during the period. The noise in this band is generally associated with wind and surface agitation. However, the noise power was not significantly correlated with wind speed. On the contrary, the diel cycle of the noise power at three locations was highly correlated with the water column concentration of O2, as measured by optodes. These measurements of environmental noise have confirmed the correlation between active acoustic signals transmitted along a seagrass meadow and the photosynthetic activity of the plants observed in a previous experiment conducted in the same area .The results suggest that acoustic noise can be used as a proxy for the photosynthetic oxygen production of a Posidonia oceanica meadow. Therefore, this work is a contribution for the development of a low cost passive acoustic system to assess the primary production of coastal ecosystems .
  • Search space reduction for localization and tracking of an acoustic source
    Publication . Rodríguez, Orlando; Zhang, Lilun; Cheng, Xinghua
    Experimental data from the SACLANTCEN 1993 Mediterranean Experiment are reviewed to assess the reduction of the search space for the localization and tracking of an acoustic source in a three-dimensional environment. Key to this goal is the availability of an initial estimate of source range and depth (called the 2D initial guess); an ambiguous estimate of source bearing can be obtained from the 2D initial guess through Environmental Signal Processing, and the ambiguity can be removed by searching for the source only in the range/bearing regions where bearing estimates are higher. This search provides a new estimate of source range and a single bearing, which together with the estimate for source depth constitute the center of the reduced search space for source localization and tracking. The suggested approach is tested on experimental data from the SACLANTCEN experiment considering different frequencies, as well as a stationary and a moving source.
  • Comparing the resolution of Bartlett and MVDR estimators for bottom parameter estimation using pressure and vector sensor short array data
    Publication . Felisberto, P.; Schneiderwind, J.; Santos, P.; Rodríguez, O. C.; Jesus, S. M.
    This work compares the resolution of a pressure and vector sensor based conventional Bartlett estimator, with their MVDR estimator counterparts, in the context of bottom characterization with a short vertical array. Santos et al. [1]demonstrated the gain of a vector sensor array (VSA) based linear estimator (Bartlett) for generic parameter estimation. Moreover, it was shown that for bottom characterization the highest resolution of the estimates were achieved with the vertical particle velocity measurements alone. The present work highlights the gain in parameter resolution of a VSA based MVDR estimator. It is shown, that also for a MVDR estimator, the vector sensor array data improves the resolution of parameter estimation. But, it is also shown, through simulations, that for bottom parameter estimation, the pressure based MVDR estimator has higher resolution and sidelobe attenuation than the VSA based Bartlett estimator. These results were verified for experimental data acquired by a four element, 30 cm long vertical VSA in the 8–14 kHz band, during the Makai Experiment 2005 sea trial, off Kauai I., Hawaii (USA).
  • Basin scale simulations of ocean acoustic tomography in the Portuguese exclusive economic zone
    Publication . Rodríguez, O. C.
    This internal report describes some of the experiments developed in the eld of Ocean Acoustic Tomography, simulation results regarding the acoustic monitoring of the Portuguese Economic Exclussive Zone and a brief description of binary m-sequences.
  • Parallel ray tracing for underwater acoustic predictions
    Publication . Calazan, Rogério; Rodríguez, Orlando; Nedjah, Nadia; Gervasi, O.; Murgante, B.; Misra, S.; Borruso, G.; Torre, C. M.; Rocha, A. M. A. C.; Taniar, D.; Apduhan, B. O.; Stankova, E.; Cuzzocrea, A.
    Different applications of underwater acoustics frequently rely on the calculation of transmissions loss (TL), which is obtained from predictions of acoustic pressure provided by an underwater acoustic model. Such predictions are computationally intensive when dealing with three-dimensional environments. Parallel processing can be used to mitigate the computational burden and improve the performance of calculations, by splitting the computational workload into several tasks, which can be allocated on multiple processors to run concurrently. This paper addresses an Open MPI based parallel implementation of a three-dimensional ray tracing model for predictions of acoustic pressure. Data from a tank scale experiment, providing waveguide parameters and TL measurements, are used to test the accuracy of the ray model and the performance of the proposed parallel implementation. The corresponding speedup and efficiency are also discussed. In order to provide a complete reference runtimes and TL predictions from two additional underwater acoustic models are also considered.