Repository logo
 

Search Results

Now showing 1 - 10 of 32
  • Rejuvenescer células “velhas”, é possível?
    Publication . Bragança, José; Santos, João
    The possibility of reprogramming differentiated adult cells which are limited in their functions, into cells capable of generating all cell types of the adult organism has opened new horizons in regenerative medicine. However, for a safe use of reprogrammed cells in new clinical applications, the reprogramming process remains to be improved. We have showed that the use of the protein Cited2 in during the reprogramming procedure increases the efficiency and homogenizes the process.
  • Bioelectrical signal detection using conducting polymer electrodes and the displacement current method
    Publication . Inácio, Pedro; Mestre, Ana L G; Medeiros, C.R.; Asgarifar, Sanaz; ELAMINE, Youssef; Canudo, Joana; Santos, João; Bragança, José; Morgado, Jorge; Biscarini, Fabio; Gomes, Henrique L.
    Conducting polymer electrodes based on poly (3, 4 ethylenedioxythiophene): polystyrene sulfonate were used to record electrophysiological signals from autonomous cardiac contractile cells present in embryoid bodies. Signal detection was carried out by measuring the displacement current across the polymer/electrolyte double-layer capacitance, and compared with voltage detection. While for relatively low capacitance electrodes, the voltage amplification provides higher signal quality, and for high capacitive electrodes, the displacement current method exhibits a higher signal-to-noise ratio. It is proposed that the displacement current method combined with high capacitive polymer-based electrodes is adequate to measure clusters of cells and whole organs. Our approach has a great potential in fundamental studies of drug discovery and safety pharmacology.
  • Generation of a human induced pluripotent stem cell line (UALGi001-A) from a patient with Left-Ventricular Noncompaction Cardiomyopathy
    Publication . Calado, Sofia; Bento, Dina; Justino, David; Mendes-Silva, Leonardo; Marques, Nuno; Bragança, José
    Left Ventricular Noncompaction Cardiomyopathy (LVNC) is characterized by excessive trabeculation of the left ventricle. To date, mutations in more than 40 genes have been associated with LVNC, however the exact mechanisms underlying the disease remain unknown. Here, we describe an induced pluripotent stem cell (iPSC) line (UALGi001-A) from a LVNC patient (LVNC-iPSC) that does not present mutations in the genes most commonly associated with the disease (van Waning et al., 2019). The LVNC-iPSC exhibited full pluripotency and differentiation potential, and retained a normal karyotype after reprogramming. This in vitro cellular model will be useful to study the molecular, genetic and functional aspects of LVNC.
  • Mitochondrial mutations in protein coding genes of respiratory chain including complexes IV, V, and MT-TRNA genes are associated risk factors for congenital heart disease
    Publication . Heidari, Mohammad Mehdi; Khatami, Mehri; Kamalipour, Akram; Kalantari, Mustafa; Movahed, Mahsa; Emmamy, Mohammad Hayet; Hadadzadeh, Mehdi; Bragança, José; Namnabat, Mohsen; Mazrouei, Bahareh
    Most studies aiming at unraveling the molecular events associated with cardiac congenital heart disease (CHD) have focused on the effect of mutations occurring in the nuclear genome. In recent years, a significant role has been attributed to mitochondria for correct heart development and maturation of cardiomyocytes. Moreover, numerous heart defects have been associated with nucleotide variations occurring in the mitochondrial genome, affecting mitochondrial functions and cardiac energy metabolism, including genes encoding for subunits of res-piratory chain complexes. Therefore, mutations in the mitochondrial genome may be a major cause of heart dis-ease, including CHD, and their identification and characterization can shed light on pathological mechanisms occurring during heart development. Here, we have analyzed mitochondrial genetic variants in previously re-ported mutational genome hotspots and the flanking regions of mt-ND1, mt-ND2, mt-COXI, mt-COXII, mt-ATPase8, mt-ATPase6, mt-COXIII, and mt-tRNAs (Ile, Gln, Met, Trp, Ala, Asn, Cys, Tyr, Ser, Asp, and Lys) en-coding genes by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) in 200 pa-tients with CHD, undergoing cardiac surgery. A total of 23 mitochondrial variations (5 missense mutations, 8 synonymous variations, and 10 nucleotide changes in tRNA encoding genes) were identified and included 16 novel variants. Additionally, we showed that intracellular ATP was significantly reduced (P=0.002) in CHD pa-tients compared with healthy controls, suggesting that the mutations have an impact on mitochondrial energy production. Functional and structural alterations caused by the mitochondrial nucleotide variations in the gene products were studied in-silico and predicted to convey a predisposing risk factor for CHD. Further studies are necessary to better understand the mechanisms by which the alterations identified in the present study contribute to the development of CHD in patients.
  • Exogenous WNT5A and WNT11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphants
    Publication . Santos, João; Mendes-Silva, Leonardo; Afonso,Vanessa; Martins, Gil; Machado, Rui; Lopes, Joao; Cancela, M. Leonor; Futschik, Matthias; Sachinidis, Agapios; Gavaia, Paulo; Bragança, José
    Mutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.
  • Generation and cardiac differentiation of a human induced pluripotent stem cell line UALGi002-A from a female patient with Left-Ventricular Noncompaction Cardiomyopathy
    Publication . Calado, Sofia; Bento, Dina; Marques, Nuno; Bragança, José
    Left Ventricular Noncompaction Cardiomyopathy (LVNC) is characterized by abnormal number and prominence of trabeculations of the left ventricle of the heart. Although LVNC has been associated with mutations in several genes encoding for transcriptional regulators, ion channels, sarcomeric and mitochondrial proteins, approximately 60% of LVNC patients do not present these genetic alterations. Here, we describe an induced pluripotent stem cell (hiPSC) line (UALGi002-A) originated from a LVNC female patient (LVNC-hiPSC) who does not present any previously known mutations associated to LVNC. The LVNC-hiPSC exhibited full pluripotency and differentiation potential and retained a normal karyotype after reprogramming. Moreover, the LVNC-hiPSC differentiated into contracting cardiomyocytes. This cellular model will be useful to study the molecular, genetic and functional aspects of LVNC in vitro.
  • Interferon-alpha decreases cancer stem cell properties and modulates exosomes in malignant melanoma
    Publication . García-Ortega, María Belén; Aparicio, Ernesto; Griñán-Lisón, Carmen; Jiménez, Gema; López-Ruiz, Elena; Palacios, José Luis; Ruiz-Alcalá, Gloria; Alba, Cristina; Martínez, Antonio; Boulaiz, Houria; Perán, Macarena; Hackenberg, Michael; Bragança, José; Calado, Sofia M.; Marchal, Juan A.; García, María Ángel
    Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma.
  • StemCellNet: an interactive platform for network-oriented investigations in stem cell biology
    Publication . Pinto, Jose P.; Kalathur, Ravi Kiran Reddy; Machado, Rui; JM Xavier; Bragança, José; Futschik, Matthias E.
    Stem cells are characterized by their potential for self-renewal and their capacity to differentiate into mature cells. These two key features emerge through the interplay of various factors within complex molecular networks. To provide researchers with a dedicated tool to investigate these networks, we have developed StemCellNet, a versatile web server for interactive network analysis and visualization. It rapidly generates focused networks based on a large collection of physical and regulatory interactions identified in human and murine stem cells. The StemCellNet web-interface has various easy-to-use tools for selection and prioritization of network components, as well as for integration of expression data provided by the user. As a unique feature, the networks generated can be screened against a compendium of stemness-associated genes. StemCellNet can also indicate novel candidate genes by evaluating their connectivity patterns. Finally, an optional dataset of generic interactions, which provides large coverage of the human and mouse proteome, extends the versatility of StemCellNet to other biomedical research areas in which stem cells play important roles, such as in degenerative diseases or cancer. The StemCellNet web server is freely accessible at http://stemcellnet.sysbiolab.eu.
  • Measuring healthy ageing: current and future tools
    Publication . Silva, Nádia; Rajado, Ana Teresa; Esteves, Filipa; Brito, David V.C.; Apolónio, Joana; Roberto, Vânia; Binnie, Alexandra; Araújo, Inês Maria; Nóbrega, Clévio; Bragança, José; Castelo-Branco, Pedro
    Human ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
  • StemMapper: a curated gene expression database for stem cell lineage analysis
    Publication . Pinto, Jose P.; Machado, Rui S. R.; Magno, Ramiro; Oliveira, Daniel V.; Machado, Susana; Andrade, Raquel P.; Braganca, Jose; Duarte, Isabel; Futschik, Matthias E.
    Transcriptomic data have become a fundamental resource for stem cell (SC) biologists as well as for a wider research audience studying SC-related processes such as aging, embryonic development and prevalent diseases including cancer, diabetes and neurodegenerative diseases. Access and analysis of the growing amount of freely available transcriptomics datasets for SCs, however, are not trivial tasks. Here, we present StemMapper, a manually curated gene expression database and comprehensive resource for SC research, built on integrated data for different lineages of human and mouse SCs. It is based on careful selection, standardized processing and stringent quality control of relevant transcriptomics datasets to minimize artefacts, and includes currently over 960 transcriptomes covering a broad range of SC types. Each of the integrated datasets was individually inspected andmanually curated. StemMapper's user-friendly interface enables fast querying, comparison, and interactive visualization of quality-controlled SC gene expression data in a comprehensive manner. A proof-of-principle analysis discovering novel putative astrocyte/neural SC lineage markers exemplifies the utility of the integrated data resource. We believe that StemMapper can open the way for new insights and advances in SC research by greatly simplifying the access and analysis of SC transcriptomic data.