Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- Biogeographical patterns of endolithic infestation in an invasive and an indigenous intertidal marine ecosystem engineerPublication . Ndhlovu, Aldwin; McQuaid, Christopher D.; Nicastro, Katy; Marquet, Nathalie; Gektidis, Marcos; Monaco, Cristián J.; Zardi, GerardoBy altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M. galloprovincialis we found a significantly higher infestation in the cool temperate bioregion than the warm temperate region. For P. perna, the prevalence of infestation was higher on the warm temperate than the subtropical region, though the difference was marginally non-significant. On the south coast, there was no significant difference in infestation prevalence between species. Endolith-induced mortality rates through shell collapse mirrored the patterns for prevalence. For P. perna, endolith species assemblages revealed clear grouping by bioregions. Our findings indicate that biogeography affects cyanobacteria species composition, but differences between biogeographic regions in their effects are driven by environmental conditions.
- A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory rolePublication . Sania, Rubaiyat E.; Cardoso, João; Louro, Bruno; Marquet, Nathalie; Canario, AdelinoChemosensation is a critical signalling process in animals and especially important in sea cucumbers, a group of ecologically and economically important marine echinoderms (class Holothuroidea), which lack audio and visual organs and rely on chemical sensing for survival, feeding and reproduction. The ionotropic receptors are a recently identified family of chemosensory receptors in insects and other protostomes, related to the ionotropic glutamate receptor family (iGluR), a large family of membrane receptors in metazoan. Here we characterize the echinoderm iGluR subunits and consider their possible role in chemical communication in sea cucumbers. Sequence similarity searches revealed that sea cucumbers have in general a higher number of iGluR subunits when compared to other echinoderms. Phylogenetic analysis and sequence comparisons revealed GluH as a specific iGluR subfamily present in all echinoderms. Homologues of the vertebrate GluA (aka alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA), GluK (aka kainate) and GluD (aka delta) were also identified. The GluN (aka N-methyl-d-aspartate, NMDA) as well as the invertebrate deuterostome subfamily GluF (aka phi) are absent in echinoderms. The echinoderm GluH subfamily shares conserved structural protein organization with vertebrate iGluRs and the ligand binding domain (LBD) is the most conserved region; genome analysis indicates evolution via lineage and species-specific tandem gene duplications. GluH genes (named Grih) are the most highly expressed iGluRs subunit genes in tissues in the sea cucumber Holothuria arguinesis, with Griha1, Griha2 and Griha5 exclusively expressed in tentacles, making them candidates to have a chemosensory role in this species. The multiple GluH subunits may provide alternative receptor assembly combinations, thus expanding the functional possibilities and widening the range of compounds detected during aggregation and spawning in echinoderms.
- Localization and distribution of nitric oxide synthase and other neuronal markers in the podia ofHolothuria arguinensisPublication . Marquet, Nathalie; Canario, Adelino; Power, DeborahThe organization of the nervous system of the holothurian podia-the tentacles, papillae, and tube feet-is still poorly understood, which limits the development of functional studies. Knowledge of nitric oxide (NO) signaling in sea cucumbers is nonexistent, although it is known to play an important role in many essential biological functions, including neurotransmission, throughout the animal kingdom. The objective of this study was to characterize the holothurian podia inHolothuria arguinensis. To this end, we used classical histology, nitric oxide synthase (NOS) distribution, using NADPH-diaphorase histochemistry and NOS immunostaining, and neuronal immunohistochemistry. Our results revealed an abundant distribution of NO in the nervous components of the holothurian podia, suggesting an important role for NO as a neuronal messenger in these structures. Nitrergic fibers were intensely labeled in the longitudinal nerve and the nerve plexus surrounding the stem, but were more weakly labeled in the mesothelium. NOS was also found in scattered cell bodies and abundant fibers in the podia terminal end (i.e., the discs in tentacles and tube feet, and the pointed conical structures in the papillae), with evident neuronal projections to the bud surface, especially in the tentacles. The podia terminal end was the most specialized area and was characterized by a specific nervous arrangement, consisting of a distinct nerve plate, rich in cells and fibers containing potential sensory cells staining positively for neuronal markers, which makes this the most likely candidate to be a chemosensory region and an important candidate for future exploration.
- Sea cucumbers, Holothuria arguinensis and H-mammata, from the southern Iberian Peninsula: variation in reproductive activity between populations from different habitatsPublication . Marquet, Nathalie; Conand, Chantal; Power, Deborah; Canario, Adelino; Gonzalez-Wanguemert, MercedesNew fisheries in the western Mediterranean and north eastern Atlantic target the sea cucumbers Holothuria arguinensis and H. mammata; however, lack of biological information hinders management decisions. Here, the reproductive biology of populations the two species was investigated in the southern Iberian Peninsula. Different populations located along a narrow latitudinal range displayed the same general reproductive pattern of summer-autumn spawning. However, significant differences in size, gonadal production and maturity profile between locations suggests the influence of site-specific factors. In Sagres and Ria Formosa H. arguinensis individuals were larger and had larger gonads than in Olhos de Agua, which had relatively more immature animals. The spawning and active gametogenesis periods were also longer in Sagres, possibly linked to specificity of food availability and tidal conditions. Ria Formosa also had larger H. mammata individuals with larger gonads than in Murcia and Olhos de Agua, possibly reflecting differences in feeding activity in different substrates (muddy/sandy vs rocky). Gametogenesis in H. arguinensis may be triggered by decreasing photoperiod and temperature, and spawning by increasing temperature. Altogether, these results, which include fecundity and size at first maturity, provide an important basis for the scientific management of sea cucumber fisheries in the region. (C) 2017 Elsevier B.V. All rights reserved.
- Chemicals released by male sea cucumber mediate aggregation and spawning behavioursPublication . Marquet, Nathalie; Hubbard, Peter; da Silva, Jose P.; Afonso, João; Canario, Adelino V. M.The importance of chemical communication in reproduction has been demonstrated in many marine broadcast spawners. However, little is known about the use of chemical communication by echinoderms, the nature of the compounds involved and their mechanism(s) of action. Here, the hypothesis that the sea cucumber Holothuria arguinensis uses chemical communication for aggregation and spawning was tested. Water conditioned by males, but not females, attracted both males and females; gonad homogenates and coelomic fluid had no effect on attraction. Male spawning water, but not female spawning water, stimulated males and females to release their gametes; the spermatozoa alone did not induce spawning. H. arguinensis male spawning water also induced spawning in the phylogenetically related H. mammata. This indicates that males release pheromones together with their gametes that induce spawning in conspecifics and possibly sympatric species. Finally, the male pheromone seems to be a mixture with at least one labile compound (biological activity is lost after four hours at ambient temperature) possibly including phosphatidylcholines. The identification of pheromones in sea cucumbers offers a new ecological perspective and may have practical applications for their aquaculture.
- Holothurians have a reduced GPCR and odorant receptor-like repertoire compared to other echinodermsPublication . Marquet, Nathalie; Cardoso, João CR; Louro, Bruno; Fernandes, Stefan; Silva, Sandra; Canario, AdelinoSea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.
- Comparison of phototrophic shell-degrading endoliths in invasive and native populations of the intertidal mussel Mytilus galloprovincialisPublication . Marquet, Nathalie; Nicastro, Katy R; Gektidis, M.; McQuaid, C. D.; Pearson, G. A.; Serrão, Ester; I Zardi, GerardoThe intertidal mussel Mytilus galloprovincialis is a successful invader worldwide. Since its accidental introduction onto the South African west coast in the late 1970s, it has become the most successful marine invasive species in South Africa. One possible explanation for this phenomenon is that M. galloprovincialis suffers less from phototrophic shell-degrading endoliths in its invasive than in its native range. We assessed photoautotrophic endolithic pressure on M. galloprovincialis in native (Portugal) and invasive (South Africa) ranges. Invasive populations were more heavily infested than native populations. In Portugal, only the biggest/oldest mussels displayed endolithic erosion of the shell and the incidence of infestation was greater at higher shore levels where more prolonged exposure to light enhances endolith photosynthesis. In South Africa, even the smallest size classes of mussels were heavily infested throughout the shore. In Portugal, endolithicinduced mortality was observed at only one location, while in South Africa it occurred at all locations and at significantly higher rates than in Portugal. Important sub-lethal effects were detected in infested native mussels, confirming previous studies of invasive populations and suggesting an energy trade-off between shell repair and other physiological constraints. We observed a positive relationship between infestation rates and barnacle colonization on mussel shells, suggesting possible facilitation of barnacle settlement/survival by shell-boring pathogens. Identification of endoliths revealed common species between regions. However, two species were unique in the invasive range while another was unique in the native region. Different levels of endolithic infestation in the invasive and the native range were not explained by the effect of major environmental determinants (Photosynthetically Available Radiation and wave height). The results reject our initial hypothesis, indicating that invasion success of M. galloprovincialis is not simply explained by escape from its natural enemies but results from complex interactions between characteristics of the invaded community and properties of the invader.
- Anatomy of the olfactory system and potential role for chemical communication in the sound‐producing lusitanian toadfish, halobatrachus didactylusPublication . Modesto, Teresa; Gregório, Beatriz Neves; Marcelino, Gonçalo; Marquet, Nathalie; Costa, Rita; Guerreiro da Costa Guerreiro, Pedro Miguel; Velez, Zélia; Hubbard, PeterThe current study investigated the structure and function of the olfactory system of the Lusitanian toadfish, Halobatrachus didactylus, using histology and electrophysiology (electro-olfactogram [EOG]), respectively. The olfactory system consists of a digitated anterior peduncle, of unknown function, containing the inhalant nostril. This then leads to a U-shaped olfactory chamber with the olfactory epithelium-identified by G(alpha olf)-immunoreactivity-on the ventral surface. A large lacrimal sac is connected to this tube and is likely involved in generating water movement through the olfactory chamber (this species is largely sedentary). The exhalent nostril lies by the eye and is preceded by a bicuspid valve to ensure one-way flow of water. As do other teleosts, H. didactylus had olfactory sensitivity to amino acids and bile acids. Large-amplitude EOG responses were evoked by fluid from the anterior and posterior testicular accessory glands, and bile and intestinal fluids. Anterior gland and intestinal fluids from reproductive males were significantly more potent than those from non-reproductive males. Male urine and skin mucus proved to be the least potent body fluids tested. These results suggest that chemical communication-as well as acoustic communication-may be important in the reproduction of this species and that this may be mediated by the accessory glands and intestinal fluid.