Loading...
303 results
Search Results
Now showing 1 - 10 of 303
- Cloning, expression, and tissue localisation of prolactin in adult sea bream (Sparus aurata)Publication . Santos, Cecilia; Brinca, Lilia; Ingleton, P. M.; Power, DeborahA major action of prolactin (PRL) in teleost fish is the maintenance of hydromineral balance in euryhaline species in fresh water. The function of PRL in marine teleosts is less certain and unlike euryhaline teleosts, such as tilapia and salmon, there is relatively little information about protein or gene structure. Associated with studies to determine potential functions of PRL, pituitary prolactin cDNA has been cloned and sequenced from sea bream (Sparus aurata), a marine teleost. The sequence obtained spanned 1349 bp and contained an open reading frame encoding a protein of 212 amino acids composed of a putative signal peptide of 24 residues and a mature protein of 188 amino acids. N-terminal sequencing of the native protein confirmed unambiguously the cleavage site, Ala24, Val25, predicted from alignments of the sea bream PRL cDNA with that of other teleosts. The presence of only one form of PRL in sea bream was supported by identification using Northern blots of only a single transcript of 1.35 kb. Reverse transcription and polymerase chain reaction techniques coupled with Southern blot analysis resulted in the detection of PRL in the pituitary but also in the intestine, liver, ovary, and testes.
- Molecular and cellular changes in skin and muscle during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus) are accompanied by changes in deiodinases expressionPublication . Campinho, Marco António; Galay-Burgos, M.; Silva, Nádia; Costa, R. A.; Alves, Ricardo N.; Sweeney, Glen E.; Power, DeborahFlatfish metamorphosis is the most dramatic postnatal developmental event in teleosts. Thyroid hormones (TH), thyroxine (T4) and 3,3′-5′-triiodothyronine (T3) are the necessary and sufficient factors that induce and regulate flatfish metamorphosis. Most of the cellular and molecular action of TH is directed through the binding of T3 to thyroid nuclear receptors bound to promoters with consequent changes in the expression of target genes. The conversion of T4 to T3 and nuclear availability of T3 depends on the expression and activity of a family of 3 selenocysteine deiodinases that activate T4 into T3 or degrade T4 and T3.
- Evolution of the angiopoietin-like gene family in teleosts and their role in skin regenerationPublication . Costa, Rita A.; Cardoso, João CR; Power, DeborahBackground The skin in vertebrates is a protective barrier and damage is rapidly repaired to re-establish barrier function and maintain internal homeostasis. The angiopoietin-like (ANGPTL) proteins are a family of eight secreted glycoproteins with an important role in skin repair and angiogenesis in humans. In other vertebrates their existence and role in skin remains largely unstudied. The present study characterizes for the first time the homologues of human ANGPTLs in fish and identifies the candidates that share a conserved role in skin repair using a regenerating teleost skin model over a 4-day healing period. Results Homologues of human ANGPTL1-7 were identified in fish, although ANGPTL8 was absent and a totally new family member designated angptl9 was identified in fish and other non-mammalian vertebrates. In the teleost fishes a gene family expansion occurred but all the deduced Angptl proteins retained conserved sequence and structure motifs with the human homologues. In sea bream skin angptl1b, angptl2b, angptl4a, angptl4b and angptl7 transcripts were successfully amplified and they were differentially expressed during skin regeneration. In the first 2 days of skin regeneration, re-establishment of the physical barrier and an increase in the number of blood vessels was observed. During the initial stages of skin regeneration angptl1b and angptl2b transcripts were significantly more abundant (p < 0.05) than in intact skin and angptl7 transcripts were down-regulated (p < 0.05) throughout the 4-days of skin regeneration that was studied. No difference in angptl4a and angptl4b transcript abundance was detected during regeneration or between regenerating and intact skin. Conclusions The angptl gene family has expanded in teleost genomes. In sea bream, changes in the expression of angptl1b, angptl2b and angptl7 were correlated with the main phases of skin regeneration, indicating the involvement of ANGPTL family members in skin regeneration has been conserved in the vertebrates. Exploration of the fish angptl family in skin sheds new light on the understanding of the molecular basis of skin regeneration an issue of importance for disease control in aquaculture.
- Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensityPublication . Anjos, Lliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João CR; Melo, Eduardo; Power, DeborahCartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. (c) 2016 Wiley Periodicals, Inc.
- Quantifying dominant bacterial genera detected in metagenomic data from fish eggs and larvae using genus‐specific primersPublication . Najafpour, Babak; Pinto, Patricia; Canario, Adelino; Power, DeborahThe goal of this study was to design genus-specific primers for rapid evaluation of the most abundant bacterial genera identified using amplicon-based sequencing of the 16S rRNA gene in fish-related samples and surrounding water. Efficient genus-specific primers were designed for 11 bacterial genera including Alkalimarinus, Colwellia, Enterovibrio, Marinomonas, Massilia, Oleispira, Phaeobacter, Photobacterium, Polarbacerium, Pseudomonas, and Psychrobium. The specificity of the primers was confirmed by the phylogeny of the sequenced polymerase chain reaction (PCR) amplicons that indicated primers were genus-specific except in the case of Colwellia and Phaeobacter. Copy number of the 16S rRNA gene obtained by quantitative PCR using genus-specific primers and the relative abundance obtained by 16S rRNA gene sequencing using universal primers were well correlated for the five analyzed abundant bacterial genera. Low correlations between quantitative PCR and 16S rRNA gene sequencing for Pseudomonas were explained by the higher coverage of known Pseudomonas species by the designed genus-specific primers than the universal primers used in 16S rRNA gene sequencing. The designed genus-specific primers are proposed as rapid and cost-effective tools to evaluate the most abundant bacterial genera in fish-related or potentially other metagenomics samples.
- A thyroid hormone regulated asymmetric responsive centre is correlated with eye migration during flatfish metamorphosisPublication . Campinho, Marco António; Silva, Nádia; Martins, Gabriel G.; Anjos, Liliana; Florindo, Claudia; Roman-Padilla, Javier; Garcia-Cegarra, Ana; Louro, Bruno; Manchado, Manuel; Power, DeborahFlatfish metamorphosis is a unique post-embryonic developmental event in which thyroid hormones (THs) drive the development of symmetric pelagic larva into asymmetric benthic juveniles. One of the eyes migrates to join the other eye on the opposite side of the head. Developmental mechanisms at the basis of the acquisition of flatfish anatomical asymmetry remain an open question. Here we demonstrate that an TH responsive asymmetric centre, determined by deiodinase 2 expression, ventrally juxtaposed to the migrating eye in sole (Solea senegalensis) correlates with asymmetric cranial ossification that in turn drives eye migration. Besides skin pigmentation that is asymmetric between dorsal and ventral sides, only the most anterior head region delimited by the eyes becomes asymmetric whereas the remainder of the head and organs therein stay symmetric. Sub-ocular ossification is common to all flatfish analysed to date, so we propose that this newly discovered mechanism is universal and is associated with eye migration in all flatfish.
- Comparative gene expression and histological analysis of skin response to injury in two congeneric flatfish with striking skin morphological differences, the brill (Scophthalmus rhombus) and the turbot (Scophthalmus maximus)Publication . Estêvão, J.; Millan, A.; Pardo, B. G.; Fernandez, C.; Rubiolo, J.; Herrera, M.; Gomez-Tato, A.; Ronza, P.; Cabaleiro, S.; Quiroga, M., I.; Power, Deborah; Martinez, P.Analysis of the morphological and genetic differences in the skin response to injury between Turbot and Brill.
- Toll-like receptor evolution: does temperature matter?Publication . Sousa, Carmen; Fernandes, Stefan A.; Cardoso, João; Wang, Ying; Zhai, Wanying; Guerreiro, Pedro; Chen, Liangbiao; Canario, A.V.M.; Power, DeborahToll-like receptors (TLRs) recognize conserved pathogen-associated molecular patterns (PAMPs) and are an ancient and well-conserved group of pattern recognition receptors (PRRs). The isolation of the Antarctic continent and its unique teleost fish and microbiota prompted the present investigation into Tlr evolution. Gene homologues of tlr members in teleosts from temperate regions were present in the genome of Antarctic Nototheniidae and the non-Antarctic sister lineage Bovichtidae. Overall, in Nototheniidae apart from D. mawsoni, no major tlr gene family expansion or contraction occurred. Instead, lineage and species-specific changes in the ectodomain and LRR of Tlrs occurred, particularly in the Tlr11 superfamily that is well represented in fish. Positive selective pressure and associated sequence modifications in the TLR ectodomain and within the leucine-rich repeats (LRR), important for pathogen recognition, occurred in Tlr5, Tlr8, Tlr13, Tlr21, Tlr22, and Tlr23 presumably associated with the unique Antarctic microbiota. Exposure to lipopolysaccharide (Escherichia coli O111:B4) Gram negative bacteria did not modify tlr gene expression in N. rossii head-kidney or anterior intestine, although increased water temperature (+4 degrees C) had a significant effect.
- Five gonadotrophin-releasing hormone receptors in a teleost fish: isolation, tissue distribution and phylogenetic relationshipsPublication . Moncaut, Natalia P.; Somoza, G. M.; Power, Deborah; Canario, Adelino V. M.Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.
- Trichome density in relation to volatiles emission and 1,8-Cineole synthase gene expression in Thymus albicans vegetative and reproductive organsPublication . Marques, N T.; Filipe, Alexandra; Pinto, Patricia; Barroso, Jose; Trindade, Helena; Power, Deborah; Figueiredo, Ana Cristina1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T. albicans leaves, bracts, calyx, corolla and inflorescences. Scanning electron microscopy (SEM) and stereoscope microscopy observations showed the highest peltate trichome density in leaves and bracts, significantly distinct from calyx and corolla. T. albicans volatiles were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC/MS) and by GC for component identification and quantification, respectively. Of the 23 components identified, 1,8-cineole was the dominant volatile (57-93 %) in all T. albicans plant organs. The relative amounts of emitted volatiles clearly separated vegetative from reproductive organs. Gene expression of CIN was assigned to all organs analyzed and was consistent with the relatively high emission of 1,8-cineole in leaves and bracts. Further studies will be required to analyze monoterpenoid biosynthesis by each type of glandular trichome.